239 字
1 分钟
三角函数公式整理
2025-12-10

三角函数#


基本概念与关系#

基本概念#

triangle

正弦:sinα=acsin \alpha = \frac{a}{c}
余弦:cosα=bccos \alpha = \frac{b}{c}
正切:tanα=abtan \alpha = \frac{a}{b}

正割:secα=cbsec \alpha = \frac{c}{b}
余割:cscα=cacsc \alpha = \frac{c}{a}
余切: cotα=bacot \alpha = \frac{b}{a}

基本关系#

sinαcscα=1sin \alpha \cdot csc \alpha = 1
cosαsecα=1cos \alpha \cdot sec \alpha = 1
tanαcotα=1tan \alpha \cdot cot \alpha = 1

cscα=1sinα\csc \alpha = \frac{1}{\sin \alpha}

secα=1cosα\sec \alpha = \frac{1}{\cos \alpha}

公式#

平方公式#

sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1
1+cot2α=csc2α1+\cot^2 \alpha = \csc^2 \alpha
1+tan2α=sec2α1+\tan^2 \alpha = \sec^2 \alpha

求导公式#

(sinx)=cosx(\sin x)' = \cos x
(cosx)=sinx(\cos x)' = -\sin x
(tanx)=sec2x(\tan x)' = \sec^2x
(cotx)=csc2x(\cot x)' = -\csc^2x
(secx)=tanxsecx(\sec x)' = \tan x \cdot \sec x
(cscx)=cotxcscx(\csc x)' = -\cot x \cdot \csc x
(arcsinx)=11x2(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}
(arccosx)=11x2(\arccos x)' = - \frac{1}{\sqrt{1-x^2}}
(arctanx)=11+x2(\arctan x)' = \frac{1}{1 + x^2}
(arcctgx)=11+x2(\arcctg x)' = - \frac{1}{1+ x^2}

加法减法公式#

sin(α+β)=sinαcosβ+sinβcosα\sin(\alpha + \beta)=\sin\alpha\cos\beta + \sin\beta\cos\alpha
sin(αβ)=sinαcosβsinβcosα\sin(\alpha - \beta)=\sin\alpha\cos\beta - \sin\beta\cos\alpha
cos(α+β)=cosαcosβsinαcosα\cos(\alpha + \beta)=\cos\alpha\cos\beta - \sin\alpha\cos\alpha
cos(αβ)=cosαcosβ+sinαsinβ\cos(\alpha - \beta)=\cos\alpha\cos\beta + \sin\alpha\sin\beta

tan(α+β)=tanα+tanβ1tanαtanβ\tan(\alpha + \beta)=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}

tan(αβ)=tanαtanβ1+tanαtanβ\tan(\alpha - \beta)=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta}

cot(α+β)=cotαcotβ1cotα+cotβ\cot(\alpha + \beta)=\frac{\cot\alpha\cot\beta - 1}{\cot\alpha+\cot\beta}

cot(αβ)=cotαcotβ+1cotαcotβ\cot(\alpha - \beta)=\frac{\cot\alpha\cot\beta + 1} {\cot\alpha-\cot\beta}

二倍角公式#

sin2α=2sinαcosα\sin2\alpha=2\sin\alpha\cos\alpha
cos2α=cos2αsin2α=2cos2α1=12sin2α\cos2\alpha=\cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha -1 = 1 - 2\sin^2\alpha

tan2α=2tanα1tan2α\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}

cot2α=cot2α12cotα\cot2\alpha=\frac{\cot^2\alpha - 1}{2\cot\alpha}

sec2α=sec2α1tan2α=cotα+tanαcotαtanα\sec2\alpha=\frac{\sec^2\alpha}{1-\tan^2\alpha}=\frac{\cot\alpha+\tan\alpha}{\cot\alpha-tan\alpha}

csc2α=12secαcscα=12(tanα+cotα)\csc2\alpha=\frac{1}{2}\sec\alpha\csc\alpha=\frac{1}{2}(\tan\alpha+\cot\alpha)

和差化积#

sinα+sinβ=2sinα+β2cosαβ2\sin\alpha+\sin\beta=2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}

sinαsinβ=2cosα+β2sinαβ2\sin\alpha-\sin\beta=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}

cosα+cosβ=\cos\alpha+\cos\beta=

诱导公式#

sin(2kπ+α)=sin(α)(kZ)\sin(2k\pi + \alpha) = \sin(\alpha)(k \in Z)
cos(2kπ+α)=cos(α)(kZ)\cos(2k\pi + \alpha) = \cos(\alpha)(k \in Z)
tan(2kπ+α)=tan(α)(kZ)\tan(2k\pi + \alpha) = \tan(\alpha)(k \in Z)

三角函数公式整理
https://blog.ingilying.top/posts/notes/math/triangle/
作者
Ingil Ying
发布于
2025-12-10
许可协议
CC BY-NC-SA 4.0